
Journal of Electronic Imaging 19(4), 043024 (Oct–Dec 2010)

Function-based design process for an intelligent ground
vehicle vision system

Robert L. Nagel
James Madison University

School of Engineering
MSC 4113, HHS 3224

Harrisonburg, Virginia 22807
E-mail: nagelrl@jmu.edu

Kenneth L. Perry
Missouri University of Science and Technology

Department of Computer Science
300 West 12th Street
203 Centennial Hall

Rolla, Missouri 65409

Robert B. Stone
Oregon State University

School of Mechanical, Industrial and Manufacturing Engineering
406 Rogers Hall

Corvallis, Oregon 97331

Daniel A. McAdams
Texas A&M University

Mechanical Engineering Department
Engineering/Physics Building 108, MS 3123

College Station, Texas 77843

Abstract. An engineering design framework for an autonomous
ground vehicle vision system is discussed. We present both the con-
ceptual and physical design by following the design process, devel-
opment and testing of an intelligent ground vehicle vision system con-
structed for the 2008 Intelligent Ground Vehicle Competition. During
conceptual design, the requirements for the vision system are ex-
plored via functional and process analysis considering the flows into
the vehicle and the transformations of those flows. The conceptual
design phase concludes with a vision system design that is modular
in both hardware and software and is based on a laser range finder
and camera for visual perception. During physical design, prototypes
are developed and tested independently, following the modular in-
terfaces identified during conceptual design. Prototype models, once
functional, are implemented into the final design. The final vision sys-
tem design uses a ray-casting algorithm to process camera and laser
range finder data and identify potential paths. The ray-casting algo-
rithm is a single thread of the robot’s multithreaded application. Other
threads control motion, provide feedback, and process sensory data.
Once integrated, both hardware and software testing are performed
on the robot. We discuss the robot’s performance and the lessons
learned. © 2010 SPIE and IS&T. [DOI: 10.1117/1.3528476]

Paper 09217PR received Nov. 10, 2009; revised manuscript received Oct.
14, 2010; accepted for publication Oct. 29, 2010; published online Dec. 28,
2010

1017-9909/2010/19(4)/043024/13/$25.00 C© SPIE and IS&T.

1 Introduction

Vision is a powerful sense providing an abundance of in-
formation about one’s surroundings and affording intelli-
gent interaction without ever requiring physical contact. It
is through vision that one learns of potential obstacles or
pitfalls, and one is able to investigate our 3-D world.1 Af-
fording this same level of perception to intelligent vehicles is
fundamental to achieving full autonomy. Intelligent vehicles
are required to perceive and interpret unknown environments
such that representations can be generated from which de-
cisions can be made, paths can be planned, and operations
can be carried out.2 Researchers at Stanford,3, 4 Carnegie
Mellon,5, 6 Cornell,7, 8 Virginia Tech,9, 10 and other Defense
Advanced Research Projects Agency (DARPA) Grand11 and
Urban12 Challenge participants have developed success-
ful vision systems for intelligent vehicles. However, their
design documents provide only limited insight into each
team’s actual design process.

This paper focuses on using engineering design method-
ologies as the foundation for intelligent vehicle design. Both
conceptual and physical phases of the engineering design
process are described and demonstrated by following the
function-based design process used to develop the Intelligent

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-1

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

Ground Vehicle Competition (IGVC) robot, MAX, and more
specifically, MAX’s vision system. MAX was developed fol-
lowing the guidelines of the 2008 IGVC (Ref. 13) as a part
of two graduate-level design courses at Missouri University
of Science and Technology (Missouri S&T). The IGVC is an
annual competition held at Oakland University in Rochester,
Michigan, where college students design and construct intel-
ligent ground vehicles to compete in up to four competitions:
robot design, autonomous challenge (obstacle course), navi-
gation challenge [global positioning system (GPS) waypoint
course] and JAUS (Joint Architecture for Unmanned Sys-
tems) communication.13 This upcoming 2011 IGVC will be
the 19th annual competition.

MAX was developed to compete in the autonomous chal-
lenge where vehicles are expected to negotiate around an
outdoor course within a prescribed time limit without ex-
ceeding 5 mph. Entries are expected to be fully autonomous;
thus, they must navigate the course by perceiving the en-
vironment and avoiding all obstacles. Neither obstacles nor
course layout is to be preprogrammed; robots are to navigate
in an unknown course environment and avoid unknown ob-
stacles. All computational power, sensing, and control equip-
ment for the robots must be carried onboard the vehicle.
Either white or yellow lines mark the course, and obsta-
cles typically consist of construction makers, barrels and
cones.

MAX is designed as a modular and scalable robot, in both
hardware and software. The software developed for MAX
is a multithreaded application, which controls and collects
data from each sensor, provides feedback via a graphical
user interface, and controls the robot’s operation based on its
perceived environment. The multithreaded application pro-
vides the benefit of software modularity; when new devices
are added to the robot or a new robot operation is desired,
the entire code base does not require modification. Instead,
a new thread can be added to control the new hardware de-
vice and ready information for the existing threads to access.
Alternatively, if new operations are desired, new threads can
be added to access existing information and command the
desired operations. Hardware modularity is achieved though

common power and communication busses for all sensors,
and drive and control components.

Since vision and vision processing systems are funda-
mental to robots’ autonomy, this paper primarily focuses
on following a systematic engineering design process as
the foundation for the design, development, and imple-
mentation of the vision systems for our 2008 IGVC entry.
Section 2 discusses the design methodology followed.
Section 3 discusses conceptual design consisting of func-
tional and process analysis. Process analysis leads to design
elements dealing with user-based interactions of the robot
such as setup, configuration, calibration, and emergency
procedures. Functional analysis leads to specific solution
strategies such as a modular architecture as well as the imple-
mentation of a vision system, which consists of a camera and
a laser range finder and a path-determination system based on
ray-casting. Section 4 describes the physical design phase,
which includes the vision system, image processing, and
path-planning algorithms. Testing performed on the robot
vision system is discussed in Sec. 5, and concluding remarks
are provided in Sec. 6.

2 Design Methodology
The design methodology of the vision system for MAX, our
IGVC robot entry, is initially intertwined with the overall
design process for the entire intelligent ground vehicle.
This design process, adopted loosely from Otto and Wood’s
Product Design text14 begins in conceptual design with the
identification of customer needs. Functionality is used to
translate the customer needs into the engineering domain,
and product modularity is identified from the product
functions following function-based, modular heuristics.15

Concepts are then developed, evaluated, and iterated before
a final concept can be chosen. Once a final concept is chosen,
the design process moves into the physical design phase
where first design parameters are detailed, then components
are specified and prototypes are developed to test the design.
The design may be iterated any number of times before the
assembly and testing of the final product. These two phases,

Fig. 1 Flow chart of the general design process taken to develop the robot and its vision system.

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-2

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

conceptual design and physical design, are illustrated in the
flow chart provided as Fig. 1.

Relating the design methodology to the intelligent ground
vehicle, first during conceptual design the requirements,
needs and outcomes are identified from the rules and ob-
jectives of the IGVC. These needs are then translated to
a functional representation of the robot, which is used as
an intermediary to (1) identify both software and hardware
modules in the final design and (2) aid with the identifica-
tion of solution principles following Zwicky’s morphological
approach.16 Solution principles are assembled into complete
concepts, which are evaluated with respect to their feasibil-
ity and ability to meet the identified requirements, needs,
and outcomes. The best designs are iterated, and a concept is
selected. Physical design begins with the design parameters
(i.e., target specifications) being identified from the IGVC
guidelines. The exact components are selected to meet the
chosen solution principles and the design parameters. When
solutions cannot simply be chosen or purchased, prototypes
(physical and/or virtual) are developed, and tests are per-
formed to validate the design attributes. With this validation
information, the design is iterated to ensure a final desired
level of quality is attained. Finally, in the case of our IGVC
robot, the final design is constructed—for designs that would
not be a one-off, further design efforts, such as design for
manufacture, are required.17–20

3 Conceptual Design Phase
Fundamental to the conceptual phase of the engineering de-
sign process is the utilization of functional and process mod-
eling. Functional modeling, found in many engineering de-
sign texts,14, 17, 18,21–25 provides a description of flow transfor-
mations occurring within the product being designed. Func-
tions describe the transformation of input flows available
into the output flows desired.14 Process models, however, are
similar to activity diagrams,14 and focus outside the prod-
uct on interactions with the environment and the customer
to describe the specific product transformations required for
operation.26 The sum of all functions identified for a design
describe what the product must do, while processes describe
what will be done with the product. For example, the IGVC
requires that each robot carry a payload. Functional mod-
eling would describe how the payload is stored, secured,
and released within the robot, while process modeling would
describe the actions required of the operator to place the
payload within the robot. More specifically, functional and
process models are defined as follows.

1. Functional modeling is the overall approach to mod-
eling what a product must do in terms of elementary
operations such that the product may achieve an overall
goal or purpose.27

2. Process modeling is the overall approach to modeling
why a product is required as a series of customer-
driven, product-based operations related through in-
put and output flows, the product being designed, and
time.26

During conceptual design, process and functional mod-
els act as intermediaries to translate the customer speak,
referred to as “statements of need,” into engineer speak de-
scribing what a product must do to meet these customer

Table 1 Raw customer needs and flow mapping for the vision system.

Raw Customer Need13 Flows

Robot needs to avoid
hitting the vertical
obstacles (e.g.,
construction drums) placed
on the course

Solid material (vertical ob-
stacle), status signal (verti-
cal obstacle)

Robot needs to visually
discern the course
boundaries

Solid material (ground with
or without boundary), sta-
tus signal (boundary pres-
ence information)

Robot needs to visually
discern standing obstacles
within course boundaries

Solid material (vertical ob-
stacle), status signal (verti-
cal obstacle)

Robot needs to stay within
boundaries of the course
during operation

Status signal (boundary
presence information), con-
trol signal (robot direction)

needs. Both functional and process models are based on
what a product must do instead of how (solution principles
and components) it will be achieved. Considering both pro-
cess and function in the design process provides many bene-
fits, including explicit identification of customer need, com-
prehensive understanding of the design problem, enhanced
creativity through abstraction, innovative concept generation
with a focus on answering what criteria must be met, and a
structured organization that can be applied to both the design
problem and the design team.14, 28 Specifically, for the de-
sign of MAX, function and process enable the robot’s design
to be considered from a fresh perspective instead of simply
a redesign of prior IGVC entries, and while this may not
immediately produce a winning robot design, it does bring
new and, hopefully, innovative ideas and outlooks into an
established competition.

To generate the functional and process models, first the
raw customer needs must be understood. For the IGVC robot,
these raw customer needs are extracted from the competition
rules.13 For example, raw customer needs for the vision sys-
tem of an IGVC robot are provided in Table 1. The raw cus-
tomer needs are then mapped to specific flows required for
both the functional and process representations of the robot.
For example, the customer need, “Robot needs to avoid hit-
ting the vertical obstacles (e.g., construction drums) placed
in the course,” maps to the flow, solid materials, representing
the actual vertical obstacles inside the robot’s sphere of influ-
ence and the flow, status signal, representing the information
collected by the robot on the vertical obstacles.

The functional22 and process26 models generated from
these flows take the form of diagrams describing the trans-
formation of flows. Models contain three specific flow types:
material flows represented with bold arrows, energy flows
represented with thin arrows, and signal flows represented
with dashed arrows. Each block in the models represents
a change that must occur to each flow to achieve the de-
sired outcomes specified by the customer’s “statements of
need.” For consistency, the nomenclature for the terminology
is taken from the functional basis lexicon,29 the functional
basis provides a standard lexicon consisting of function and
flow terms for the generation of function-based models.

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-3

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

Fig. 2 Environment and high-level process model for the robot.

For MAX, a first-pass functional model detailing how the
robot is expected to operate is generated, followed by the gen-
eration of a first-pass process model detailing the required
interactions with the robot (e.g., setup, calibration, start/stop,
and emergency procedures). The high-level model (shown in
Fig. 2 for the IGVC robot) describes the environments as well
as the process and subprocesses that detail where and how the
robot must operate. These subprocesses are termed events.26

The robot will be operating at Oakland University and there
will be two subenvironments: (1) a staging area where the
robot can be calibrated and set up and (2) a navigation course
where the robot actually competes in the navigation chal-
lenge. To calibrate the robot, the operator and environmental
information is required as well as a signal indicting that the
robot is uncalibrated. Once calibrated, the robot may be pre-
pared. Preparation involves charging or replacing batteries,
adding a payload to the robot, and setting the robot to an on or

ready position to enable the robot to be started with a single
key stroke. In the navigation challenge, surface information,
obstacle information, boarder information, and potentially,
emergency stop information are required. Once done with
all of the events, the robot with its payload leaves the win
navigation challenge process.

Each of the events (subprocesses) in the process model
(shown in Fig. 2) is further decomposed to consider specific
changes (termed configurations) required of the robot to ful-
fill the desired outcomes from each event.26 For example,
the process, calibrate robot (provided as Fig. 3) describes
the human operator interacting with the robot to actuate a
calibration routine. Information from the environment, rep-
resented as a dashed line, is collected by the robot. Once
this information is collected, the information is transmitted
as a status signal back to the operator. The operator can then
use the information to regulate (i.e., calibrate) the robot for

Fig. 3 Configuration model for the calibration robot event of the win navigation challenge process.

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-4

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

Fig. 4 Vision system and path determination portions of the functional model for the robot.

its operating environment. This process model describes the
customer’s interaction through an interface on the robot to
understandal environmental conditions and to make adjust-
ments to the robot’s settings.

Configuration information can then used to update the
functional model to include flow transformations related to
user interactions with the robot. The final functional model
of the IGVC robot includes flow transformations for all of the
identified needs of an IGVC robot as well as functionality
for the detection of solids (vertical and horizontal obsta-
cles), processing of the status for understanding and making
decisions about navigational data, and actuation of electrical
energy to represent both the startup and the termination (both
intended and emergency) of the robot.

Abstracting the robot functions rather than starting with
the specific components used on similar robots leads to the
separation of the vision tasks that must be performed by
the robot to achieve autonomy. As functions were chosen to
abstract the IGVC requirements into a functional model of
a robot, two types of obstacles are identified. One type are
those that the robot must drive around; the other type are
boundaries that the robot must stay within. The functional-
ity for the model was derived to detect these two types of
obstacles; they are (1) the detection of obstacles visible in a
vertical plane (e.g., cones, construction pylons, barrels) and
(2) the detection of obstacles visible in a horizontal plane
(e.g., white and yellow lane lines). The obstacle detection
and path determination portion of the functional model is
provided in Fig. 4. The vision functional model abstracts the
processing of vertical obstacles with three function blocks.
First, import solid, represents vertical obstacles coming into
the sphere of influence of the robot. Detect solid represents
the robot’s collection of information. The collected vertical
obstacle information takes the form of a status signal (dashed
arrow). The status signal is processed before it is combined

with the horizontal obstacle data—also a status signal rep-
resented by a dashed arrow. The process status signal block
provides an abstraction for the robot’s attempt to find po-
tential paths from the combined vertical and horizontal data,
and the convert status to control signal is the robot making a
decision on which path it should traverse.

One of the major design goals of our IGVC robot is to de-
velop an architecture that is modular both in the hardware and
software. To identify potential modularity during the design
process when it is more simple to implement, the functional
model was divided into “chunks” via the application of mod-
ular heuristics.15 Modular heuristics provide steps to identify
modules based on potential flow paths through a functional
model; these flow paths are (1) flow dominance—the flow
passes through a sequence of functions with its state largely
unchanged, (2) flow branching—the flows diverge or con-
verge at a function in the model, and (3) flow conversion—
the flow’s type changes (e.g., liquid changes to gas).
Figure 5 provides the functional model of the vision system
of our robot with potential modules identified via modular
heuristics.

Through the application of modular heuristics, five po-
tential modules for the vision system are identified from the
functional model. Two hardware modules are identified via
the flow conversion heuristic whereby the solid obstacle flows
(bold arrows) are converted to status signals (dashed arrows)
to represent the flow of raw obstacle data into the robot’s
computer. One of these hardware modules represents the de-
tection of vertical obstacles while the other represents the
detection of the horizontal obstacles. Three additional mod-
ules are identified for the software: (1) one for the processing
of raw vertical obstacle data, (2) another for the processing
of raw horizontal data, and (3) a third for the analysis of
the processed obstacle data. These distinct modules lead to
a multithreaded software design where hardware access and

Fig. 5 Potential modules identified during functional analysis. (Color online only.)

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-5

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

Fig. 6 Component-to-function mapping for the vision system and path determination portions of the
functional model of the robot. (Color online only.)

computation requirements are each processed on separate
threads. This design enables each device to work indepen-
dently and concurrently.

To identify components, the functional model is used as a
framework of what the robot must do. Research is performed
to identify solution strategies consisting of components and
algorithms that answer how to meet the identified functional-
ity. A number of different solution strategies are identified for
each function in the functional model. These solution strate-
gies are mixed and matched via a morphological matrix16

to develop unique concepts, which are then evaluated based
on their feasibility and ability to meet the identified require-
ments. The concepts, which are identified as having the most
potential, are refined until the best solution for the identified
criteria is selected. While this ideation is performed for the
entire functional model to generate a final design, for sim-
plicity, it is shown in Fig. 6 only for the vision system and
path determination portions of the functional model. Once
solutions are chosen for the entire functional model, they are
pieced together to develop an initial concept for the intelli-
gent ground vehicle. It is this initial concept that now moves
into the physical design phase.

4 Physical Design Phase
During the physical design phase, the conceptual design is
now developed into the final product. Following the design
parameters set by the guidelines of the IGVC, specific com-
ponents are identified for each of the solution concepts. These
components or strategies are described in text under the so-
lution concepts in Fig. 6. A construction barrel represents the
vertical obstacles that might be encountered on the obstacle
course; these vertical obstacles are detected via a Hokuyo
URG-04LX laser scanner.30 White lines represent the hori-
zontal obstacles that might be encountered and are detected
by an Apple iSight digital camera.31 The raw data from the
laser scanner and the iSight will be processed independently
(discussed in Sec. 4.1 and 4.2) before being analyzed for
potential gaps where the robot can traverse. A ray-casting
algorithm is implemented for the robot’s path identification
algorithm (discussed in Sec. 4.3).

Further development focuses on the assembly and test-
ing of prototypes for each system. Prototype assembly and
testing follows the hardware and software modules identified
as functional modules during conceptual design. Thus, each

piece of the vision and path determination systems are inde-
pendently assembled and tested before their final assembly
into the robot.

The design process continues similarly on the software
side. For example, consider all aspects of the software linked
to the vision system. The model of the software system (il-
lustrated in Fig. 7) includes six of the robot’s seven threads.
(The GPS thread, which is not used with the vision sys-
tem, has been omitted for simplicity.) The seven threads
include: (1) main/dashboard—responsible for providing a
visual interface for the user; (2) GPS—responsible for con-
trolling the universal serial bus (USB) serial connection with
the GPS device; (3) LIDAR (light detection and ranging)—
responsible for collecting and processing vertical obstacle
information (discussed in Sec. 4.1); (4) camera—responsible
for collecting and processing horizontal obstacle information
(discussed in Sec. 4.2); (5) path finding—responsible for
finding identifying potential paths in the collected sensory
data (discussed in Sec. 4.3); (6) motion control—responsible
for providing pulse width modulation (PWM) signals to
the motor controllers; and (7) artificial intelligence (AI)—
responsible for making decisions based on data received from
the pathfinder and passing on decisions to the motion control
thread. Each of these threads in the software is independently
developed and tested (discussed in Sec. 5) both in software
and with its respective hardware device before being assem-
bled into the complete robot software system. Physically, the
final code is split into two parts: (1) a library for handling the
device controllers, the path finding, motion control, and AI,
and (2) a main application that combines all of the elements
in the library with a graphical user interface (dashboard) and
operator control. All software is written in C and C + +
using open source libraries.

The convention followed in Fig. 7 is that rectangular boxes
are actions to be performed, while diamond boxes are flow
control based on a condition. Conditions include single-case-
based true/false or the completion of groups of tasks. Dashed
boxes represent the data of a thread and are used to share
information between threads. Dashed arrows represent the
generation of a new thread or forcing a no longer required
thread to rejoin the main thread.

It is the integration of both hardware and software that is
key to a successful vision system. The following subsections
describe the following three key parts of our IGVC robot’s
vision system: (1) the laser-scanner-based vertical vision

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-6

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

Fig. 7 Analytical model of the modular software’s thread layout.

system, (2) the camera-based horizontal vision system, and
(3) the ray-casting-based path determination algorithm. De-
tails on each of these key vision system parts are discussed
in detail in the following subsections.

4.1 Vertical Obstacle Vision System
For the vertical obstacle detection, the vision system is re-
quired to detect physical obstructions within a 180-deg field
of view from the front of the robot. For this, a Hokuyo URG-
04LX laser scanner or LIDAR system is chosen. The Hokuyo
URG-04LX (Ref. 30) provides a 240-deg field of view with
a 0.3516-deg angular resolution from 20 to 4090 mm. The
LIDAR is mounted at front center of MAX beneath a shield
to block direct sunlight (as shown in Fig. 8), and is connected

to the robot’s onboard computer, an Apple MacBook, via a
Sewell SW-1301 RS232 to USB adapter.32

The thread that interfaces the robot’s software with the
LIDAR receives the distance and angle for each ray that
strikes a vertical obstacle from the LIDAR’s driver. This
information, stored as an array, is filtered to remove erroneous
hits. For each sweep of the LIDAR, erroneous hits occur
in one of two ways. First, erroneous hits occur from self-
visualization; the LIDAR sees itself and the front edges of the
robot. Second, erroneous hits occur when the LIDAR detects
obstacles occurring beyond the calibrated vision range of the
robot. These erroneous hits are either very close to the robot
(approximately 0.25 m) or very far (approximately 4 m).
The actual LIDAR threshold range values are empirically

Fig. 8 Vision system layout for the robot. (Color online only.)

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-7

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

Fig. 9 Left: original image of the 1- × 1-ft (30.48-cm) checkerboard tiled floor with distortion; right:
image of the checkerboard tiled floor with the perspective corrected. (Color online only.)

identified, and hits beyond them are removed with a bandpass
filter.

Once the array of points is filtered, the remaining points
are converted and scaled to fit into the local coordinate sys-
tem. The local coordinate system, which places its origin at
the front center of the robot, is based on the position of the
robot whereby the angle of the robot’s heading is always
0 deg. Since the LIDAR system is firmly affixed at the origin
and moves with the robot, its coordinate system is already
aligned with the robot’s and requires only scaling. Each hit
from the LIDAR is scaled a 1/5600 unit. This scaling factor
was determined experimentally.

4.2 Horizontal Obstacle Vision System
Horizontal obstacles (i.e., those located on the ground in
front of the robot) at the IGVC tend to consist primarily of
white lines; however, there could potentially be yellow lines,
sand traps, and potholes. To detect these obstacles, an Apple
iSight is chosen. The Apple iSight 31 is autofocusing from
50 mm to infinity with automated shutter speed adjustment
and a video capture rate of 30 frames/s. The iSight is mounted
directly above the LIDAR at front center of MAX, as shown
in Fig. 8, and is connected to the robot’s onboard computer
via a firewire.

To interface with the iSight, the Open Computer Vi-
sion (OpenCV) library, developed initially by Intel, is
implemented.33 OpenCV provides all of the tools and al-
gorithms required to convert the raw image captured from
the iSight into the line-based obstacle information required
by the ray-casting algorithm for path determination. On ini-
tialization of the camera vision thread, the Apple QuickTime
drivers34 start the iSight video stream, and OpenCV begins
capturing individual frames from the live video feed. Since
the iSight is positioned at a relatively shallow angle with
respect to the ground, each image must be corrected for
distortion. To correct this, a distortion matrix fits the image
within a trapezoid to correct perspective. The correction ra-
tios are determined via an empirical study whereby images
are taken of a 1-× 1-ft (30.48-cm) checkerboard tiled floor
with increasing distortion ratios until the tiles appear to ex-
tend vertically toward the horizon. This distortion correction
is shown in both the original and perspective corrected forms
in Fig. 9.

To analyze each image for horizontal obstacles, an adap-
tive threshold algorithm is applied. The adaptive threshold
converts a gray-scale image into a binary image by filtering
out pixels with values above or below a limit calculated from
each pixel’s pixel neighborhood.33 Thus, groups of pixels of
similar “color”, are filtered from the image (turned to black)
and pixels, where the “color” changes are left in the image
(turned to white). The application of an adaptive algorithm
allows the robot vision system to see all changes in color,
i.e., white lines, yellow lines, sand traps, and potholes from
the grass. In Fig. 10 (left) the adaptive threshold algorithm
has been applied to the checkerboard floor image provided
in Fig. 9 (right).

4.3 Vision Processing—Path Finding
To determine gaps or openings around obstacles, a ray-
casting algorithm is utilized. Ray-casting, which was ini-
tially pioneered by Goldstein and Nagel,35 is a technique
originally designed for simulating light in reverse for use in
3-D graphics. Ray-casting is scalable, however computation-
ally expensive,36 but its simplicity lends its application well
for applications ranging from virtual navigation to large in-
telligent ground vehicles such as with the Defense Advanced
Research Projects Agency (DARPA) Urban Challenge.37 A
complete discussion of all of the vision applications of ray-
casting is beyond the scope of this paper; however, a few
of the vision applications where ray-casting algorithms have
been applied include navigation of virtual environments such
as with computer games,38 pointer techniques,39 and medi-
cal applications where computed tomography (CT) or mag-
netic resonance imaging (MRI) scans provide the virtual
landscape40 to navigating actual 3-D environments such as
with intelligent ground vehicles.2, 37, 41, 42 In robotics, ray-
casting algorithms are typically used like a virtual LIDAR
scanning the sensor collected information such that either
a 2-D or 3-D map can be generated from which navigation
decisions can be made.2, 41

Our application is similar to this; we have applied ray-
casting to scan through the data collected by the LIDAR and
camera vision systems to find the openings where the robot
can most easily pass through the obstacles and continue along
the obstacle course. To ready the LIDAR and camera data
for the ray-casting algorithm (performed in the pathfinder
thread), both data sets must be converted to lists of lines. This

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-8

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

Fig. 10 Left: image of the checkerboard tiled floor after the adaptive threshold is applied; right: image
of the checkerboard tiled floor after least–squares regression is applied.

conversion to lines increases the likelihood that an identified
object (which is stored as an infinitely small point) will be
struck by a cast ray. For the LIDAR, the data set consists of an
array of points. Each point is converted to a horizontal line of
length 1/5600 units based off point center. The line length of
1/5600 is the same as the scaling factor to provide an overlap
so that side-by-side points represent one continuous object.
For the camera, even with the conversion to binary, significant
noise remains present in the image. To deal with the noise,
the image is sectioned into 32 × 32 (1024) squares. Squares
with white space below a set threshold are ignored, while
those above the threshold have a least-squares regression
applied on the white pixels in the square. The threshold for
errant white noise is adjusted for the robot’s environment
and must be recalibrated each time the robot is moved to
a new testing or competition environment. The application
of least-squares regression provides a “best fit” line for the
white pixels in each of the 1024 squares as shown in Fig. 10
(right). These LIDAR and camera point-to-line conversions
are performed within each hardware device’s specific thread
before being handed off as separate line lists to the pathfinder
thread.

The pathfinder thread, which contains the ray-casting al-
gorithm, runs separately from and simultaneously with the
threads that control the aforementioned LIDAR and the cam-
era, as shown in Fig. 7. Thus, as new information is being
processed by the LIDAR and camera threads, prior infor-
mation is being processed by the pathfinder. The pathfinder
thread begins by collecting the last sets of lines processed
by the LIDAR and camera threads. These two lists of lines
are compiled into a single list before rays are cast at each
line from every degree within the range of − 135 to 225 deg.
This is shown pictorially in Fig. 11. Each ray cast starts at
the origin of our robot’s coordinate system with an initial in-
tersection point of infinity. The actual ending point for each
ray in X and Y coordinates is calculated based on Eqs. (1)
and (2), where θ is the angle of the ray cast, and 100 units
is the length of each ray. Two lists are created to keep track
of the rays that are cast: one for those that do not intersect
lines—the openings list—and a second for those that do—the
obstacles list.

rayendx = −100 cos θ, (1)

rayendy = 100 sin θ . (2)

For each ray cast, the algorithm calculates theoretical in-
tersections between the ray and the lines based on obstacles.
These theoretical intersections are the intersection points if
the ray and the lines extend infinitely in both directions. If
the theoretical intersection corresponds to an actual point
on both the ray and a line, then the ray-casting algorithm
has found an obstacle. Since each could potentially strike
multiple lines (from camera, LIDAR or both), the algorithm
checks to see if each intersection point is closer than any prior
known intersection points. If the intersection point is indeed
closer than a prior known intersection, then the intersection
is stored in the list for intersecting lines—this is the obstacle
list. If, however, the ray does not intersect with lines from the
LIDAR or camera or the intersection is further from origin
than a prior known intersection, the ray is stored in a second
list—this is the openings list.

To determine the path the robot should take to miss
obstacles, a tend angle, or angle the robot should turn to
move around obstacles, is calculated. The tend angle is ini-
tially straight forward (0 deg on our coordinate system), and
through operation, it tends toward the most forward path
available for the robot to avoid obstacles. When the ray-
casting algorithm finds an obstacle in the forward most path
of the robot, the openings list is searched for the nearest

Fig. 11 Representation of the ray-casting algorithm applied to find
lines visualized from obstacles detected via LIDAR and camera vision
systems. (Color online only.)

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-9

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

opening between obstacles with enough room for the robot
to fit. Once an opening is found, the horizontal component of
the triangle formed at the opening by the angle of the initially
cast ray is offset by 0.3 units; a new tend angle is calculated
based on the initially cast ray and the offset. This offset, used
to insure the robot will safely pass by obstacles, is determined
to be 0.3 units from the width of the robot. The new non-0-
deg tend angle is made available to the AI thread, where the
direction that the robot should head is determined—either
straight, hard or soft left, or hard or soft right. The direction
is handed off to the motor control thread. The motor control
thread controls the counter-timer hardware, and relays the di-
rection information. On the hardware side, the counter-timer
generates a PWM signal for the motor controllers, which
ultimately drives the robot based on the PWM signal.

5 Testing and Results
As stated in Sec. 4, prototype assembly and testing during
the physical design phase of MAX enabled each hardware
and software module to be tested before implementation into
the final design. Once the final implementation was assem-
bled, testing was again performed with the entire platform
to validate initial assumptions and to ensure that each mod-
ule once integrated still performed as anticipated. Testing of
each module and of the final design was performed similarly,
using both virtual test scenarios to validate code logic as well
as hardware tests to validate physical assumptions. Further
details on testing and results for the vision system follow.

The final implementation of the robot image processing
and path-finding systems are tested in two ways. First is
software validation, whereby test case scenarios are run and
results are verified. Second, the robot with its fully imple-
mented vision system, is taken outside to a sample course.
The robot is tested with a variety of vision scenarios with
the results observed. This physical testing continued on the
sample course at the IGVC before the actual competition.
During the testing of the final implementation, there are no
major modifications to the robot’s systems. Instead, the only
modifications were adjustments to configurations and filter
ranges.

To validate the software, testing is performed at several
levels. At the lowest level, unit testing is performed by us-
ing the UnitTest++ library43 and test-driven development
(TDD).44 TDD is a development paradigm specifying soft-
ware testing before the code is written. TDD specifies that
tests should be run on every build to verify that code modifi-
cations do not result in broken code, where code previously
functioned correctly (helping to prevent regressions). Under
the TDD paradigm, a testing framework is constructed to
verify the program, and tests are written that exercise the
software in various ways to verify the code’s “correctness”.
Tests are designed as short-to-test, small pieces of functional-
ity (i.e., each test verifies just one aspect of the code). Having
modular software facilitates TDD testing as it enables mod-
ules to be tested as discrete checks. Each test simulates the
resultant data from real scenarios that might be encountered
by the robot. For example, a test of the pathfinder would
feed the pathfinder thread simulated line data and check if
the tend angle returned from the pathfinder matches the ex-
pected result. Following a TDD paradigm enables each soft-
ware module to be tested at startup without having to connect

all of the hardware to the system. Modules can then be devel-
oped separately without having to consider the code required
to interface with specific hardware devices, and once each
module is incorporated into the overall system there is some
assurance as to each module’s functionality.

Software testing is also performed using the actual hard-
ware. Since the software is modular and all the hardware
uses standard (USB and Firewire) connections, each piece
of hardware is tested remotely from the robot through di-
rect connection to a development PC. When pieces of hard-
ware are not connected to the computer, the software simply
disables them, allowing for easier and more versatile test-
ing. This ability is also useful when the robot is running,
allowing for tests to be run with as few hardware pieces
as possible. For example, the robot can be run with only
the LIDAR or camera sending data to the pathfinder. These
tests enable more efficient debugging of the integrated robot
system.

Once implementation is complete, MAX, with completed
(alpha level) software and vision hardware, is taken outside to
a sample course constructed on the Missouri S&T campus.
MAX is physically placed in a variety of obstacle scenar-
ios involving vertical barriers and white lines painted on the
ground. An opportunity is provided for the robot to navigate
around the obstacles. The display of the robot’s laptop com-
puter provides continuous feedback on the obstacles being
processed and the tend angle desired. The images provided
in Fig. 12 demonstrate the vision and path finding of MAX.

To begin, MAX is placed before a white line painted
on the grass (Fig. 12, top left). An image is captured from
the video stream and corrected for distortion (Fig. 12, top
middle) before the adaptive threshold and linear regression
can be applied to generate lines representing obstacles (Fig.
12, top right). The pathfinder displays the tend angle, adjusted
to miss the obstacle, to the user via a graphical user interface
(GUI) on the display of MAX’s onboard Apple MacBook
(Fig. 12, bottom left). The tend angle (shown as a dark blue
arrow extending upward and right from the origin) directs
MAX to turn right. A large trash barrel is now placed before
MAX to test the vertical obstacle avoidance (Fig. 12, bottom
middle), and the tend angle adjusts further right to avoid the
barrel and the remaining visible white lines (Fig. 12, bottom
right).

During testing, several minor problems are found mainly
dealing with environmental conditions. First, the camera vi-
sion system is found to be highly sensitive to shadows. Since
shadowed areas are darker than areas of direct sunlight, the
adaptive-threshold algorithm tends to consider the shade to
direct sunlight difference as a line. This erroneous line in-
formation is then propagated to the pathfinder and the tend
angle adjusts to avoid this boundary between shade and direct
sunlight. This is found to be a large problem during testing
on the practice course at Missouri S&T, it turns out to be
a nonissue at the IGVC since there are no shadows for the
robots to contend with.

A similar problem is found during midafternoon testing
when the sun tends to be its brightest; the bright sun washes
out some of the color difference between the white lines and
the grass. With the differential reduced, the adaptive thresh-
old does not always find the difference, and the line is not
avoided. Adjusting the block size of the adaptive threshold
algorithm helps to increase the algorithm’s sensitivity and

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-10

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

Fig. 12 Processed images and pathfinder output resulting from the placement of obstacles in the path
of the robot during field testing on the Missouri S&T sample course. (Color online only.)

improves operation during periods of bright sunlight. This
problem, however, cannot be completely corrected by the
configuration changes and continues to cause problems for
the vision system during the competition.

The final issue discovered stems from the hardware spec-
ifications. Since the LIDAR is not rated for outdoor use
(its disturbance light level is 10,000 lux), it randomly stops
responding during a washout.30 To work around this, the
LIDAR thread monitors the state of the LIDAR, and if the
LIDAR turns off or stops responding, the robot pauses its
movement for 5 s, restarts the LIDAR, waits for the LIDAR
to recalibrate, and then, continues to move. Finding this prob-
lem during the testing at Missouri S&T was fortuitous as a
washout occurred once during competition, and the robot
was able to recover from the failure.

6 Discussion and Conclusions
An engineering design approach to intelligent ground vehicle
development was presented. The function-based, engineering
design process presented provided the foundation for the de-
sign of the IGVC robot, MAX. Functionality was considered
through both the conceptual and physical design phases and
not only provided the framework for module identification
but also provided the framework for concept identification.
Once in the physical design phases, the functional foundation
was maintained by considering each module independently
for assembly, testing, and final integration. Specific mod-
ules identified prior to component assignment led to a mul-
tithreaded software system distributing not only the vision
tasks to independent threads but also all other processing and
hardware access needs such as navigation, self-monitoring,
way-point analysis, and motor control. This multithreaded
design enabled processing tasks to run concurrently (i.e.,
new image information can be collected while current

information is being analyzed to determine the optimal path
for the robot). The modularity of the robot’s hardware and
software systems enabled each to be divided into subsys-
tems that can be implemented as relatively simple, tractable
pieces, and assembled into the complete robot system. It is
this utilization of function and process that led to a design in-
tegrating the IGVC requirements into a cohesive yet modular
system.

At the IGVC, the robot system performed well, and
the vision system operated as intended. White lines and
barrels generally were visualized and the ray-casting based
pathfinder was able to project tend angles to avoid obsta-
cles. In each competition run, the robot navigated the course
consistently up to the switchback that is placed within the
lane lines of the course. At the switchback, however, prob-
lems did arise. In each run, the robot enters the switchback at
maximum velocity, and while the visual system is able to up-
date and perceive the obstacle, the pathfinder, running on the
prior data set, could not find a valid path through the switch-
back. This coupled with the robot operating at maximum
velocity when entering the switchback and the robot’s wide
turning angle, resulted in a consistent error that terminated
each competition run.

The issues identified at the switchback as well as through-
out testing at the competition revealed a number of issues that
should receive reconciliation in future versions of the vision
system and path-planning algorithms. These reconciliations
include (1) increased camera height to reduce the distortion
of the image feed, (2) autodetection and status monitoring
for all devices, (3) virtual course with virtual path planning
such that information from the LIDAR and the camera are
compiled into a virtual representation of the course so vir-
tual paths can be analyzed ahead of the robot and remem-
bered after the robot’s departure, (4) distributed computing
across multiple networked computers, (5) improved camera

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-11

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

filtering to remove noise, and (6) better control over the
robot’s speed such that it can be decreased when more time
is required to determine appropriate paths, and conversely, it
can be increased when less time is required.

References
1. B. K. P. Horn, Robot Vision, The MIT Press, Cambridge, MA.
2. H. H. González-Banos, and J.-C. Latombe, “Navigation strategies for

exploring indoor environments,” Int. Journal of Robotics Research,
21(10–11), 829–848 (2002).

3. S. Thrun, et al. “Stanley: the robot that won the DARPA grand chal-
lenge,” J. Field Robot. 23(9), 661–692 (2006).

4. Stanford Racing Team, "Stanford’s robotic vehicle Junior," Interim
Report (2007); available from: http://www.darpa.mil/grandchallenge/
TechPapers/Stanford.pdf.

5. C. Urmson,et al. “A robust approach to high-speed navigation
for unrehearsed desert terrain,” J. Field Robot. 23(8), 467–508
(2006).

6. C. Urmson, et al. “Tartan racing: a multi-modal approach to the
DARPA urban challenge,” (2007); available from: http://www.darpa.
mil/grandchallenge/TechPapers/Tartan Racing.pdf.

7. I. Miller, S. Lupashin, N. Zych, P. Moran, B. Schimpf, A. Nathan, and
E. Garcia, “Cornell University’s 2005 DARPA grand challenge entry,”
J. Field Robot. 23(8), 626–652 (2006).

8. M. Campbell, E. Garcia, D. Huttenlocher, I. Miller, P. Moran, A.
Nathan, B. Schimpf, N. Zych, J. Catlin, F. Chelarescu, H. Fujishima,
F.-R. Kline, S. Lupashin, M. Reitmann, A. Shapiro, and J. Wong,
“Team Cornell: technical review of the DARPA urban challenge ve-
hicle,” (2007); available from: http://www.darpa.mil/grandchallenge/
TechPapers/Team Cornell.pdf.

9. B. M. Leedy, J. S. Putney, C. Bauman, S. Cacciola, J. M. Webster, and
C. F. Reinholtz, “Virginia Tech’s twin contenders: a comparative study
of reactive and deliberative navigation,” J. Field Robot. 23(9), 709–727
(2006).

10. C. Reinholtz, et al. “DARPA urban challenge technical pa-
per” (2007); available from: http://www.darpa.mil/grandchallenge/
TechPapers/Victor Tango.pdf.

11. DARPA, “Grand challenge 2005 team technical papers” (2005) [cited
2010 Oct. 8]; available from: http://www.darpa.mil/grandchallenge05/
techpapers.html.

12. DARPA, “Teams: DARPA urban challenge” (2007) [cited 2010 Oct.
8]; available from: http://www.darpa.mil/grandchallenge/teamlist.asp.

13. Intelligent Ground Vehicle Competition, “The 16th Annual Intelli-
gent Ground Vehicle Competition” (2008) [cited 2008 April]; available
from: www.IGVC.org.

14. K. Otto, and K. Wood, Product Design: Techniques in Reverse Engi-
neering, Systematic Design, and New Product Development, Prentice-
Hall, New York. (2001).

15. R. Stone, K. Wood, and R. Crawford, “A heuristic method for iden-
tifying modules for product architectures,” Design Stud. 21(1), 5–31
(2000).

16. F. Zwicky, Discovery, Invention, Research—Through the Morphologi-
cal Approach, The Macmillian Company Toronto (1969).

17. K. T. Ulrich and S. D. Eppinger, Product Design and Development, 3rd
ed., McGraw-Hill/Irwin, Boston (2004).

18. D. G. Ullman, The Mechanical Design Process, 4th ed., McGraw-Hill,
Boston 2010.

19. S. D. El Wakil, Processes and Design for Manufacturing, 2nd ed.,
Waveland Press, Prospect Heights, IL (2002).

20. C. Poli, Design for Manufacturing: A Structured Approach,
Butterworth-Heinemann, Boston (2001).

21. D. Cutherell, “Product architecture,” Chap. 16 in The PDMA Handbook
of New Product Development, M. Rosenau Jr., Ed., Wiley, New York
(1996).

22. G. Pahl, W. Beitz, J. Feldhusen, and K. H. Grote, Engineering Design:
A Systematic Approach, 3rd ed., Springer Verlag, London (2007).

23. L. Miles, Techniques of Value Analysis and Engineering, McGraw-Hill,
New York (1961).

24. C. L. Dym and P. Little, Engineering Design: A Project-based Intro-
duction, Wiley, New York (2004).

25. N. Cross, Engineering Design Methods: Strategies for Product Design,
John Wiley & Sons, Ltd, Chichester (2000).

26. R. L. Nagel, R. S. Hutcheson, R. B. Stone, and D. A. McAdams,
“Process and event modelling for conceptual design” J. Eng. Design,
(2009).

27. R. Stone, K. Wood, and R. Crawford, “Using quantitative functional
models to develop product architectures,” Design Stud. 21(3), 239–260
(2000).

28. D. G. Ullman, The Mechanical Design Process, McGraw-Hill, New
York (2002).

29. J. Hirtz, R. Stone, D. McAdams, S. Szykman, and K. Wood, “A func-
tional basis for engineering design: reconciling and evolving previous
efforts,” Res. Eng. Design 13(2), 65–82 (2002).

30. Hokuyo Automatic Co., L., Range-Finder Type Laser Scanner URG-
04LX Specifications (2005): http://www.acroname.com/robotics/parts/
R283-HOKUYO-LASER1s.pdf.

31. Apple Corporation, iSight User’s Guide (2004): http://manuals.info.
apple.com/en US/iSightUserGuide.pdf.

32. Sewell, Sewell SW-1301 Serial to USB Adaptor (2007).
33. Intel Corporation, OpenCV Reference Manual (2000): avail-

able from: http://www.cs.unc.edu/Research/stc/FAQs/OpenCV/
OpenCVReferenceManual.pdf.

34. Apple Corporation, QuickTime, in Developer Connection (2009): http:
//developer.apple.com/quicktime/.

35. R. A. Goldstein, and R. Nagel, “3-D visual simulation,” Simulation
16(1), 25–31 (1971).

36. J. Hurley, “Ray tracing goes mainstream,” Intel Technol. J., 09(02),
99–108 (2005).

37. P. Stone, P. Beeson, T. Mericli, and R. Madigan, “Austin robot tech-
nology — DARPA urban challenge technical report” (2007); avail-
able from: http://www.darpa.mil/grandchallenge/TechPapers/Austin
Robot Tech.pdf.

38. A. Lamothe, J. Ratcliff, and D. Tyler, Tricks of the Game Programming
Gurus, Sams Publishing, Indianapolis IN (1994).

39. S. Lee, J. Seo, G. J. Kim, and C.-M. Park, “Evaluation of pointing
techniques for ray casting selection in virtual environments,” in Proc.
3rd Int. Conf. on Virtual Reality and Its Application in Industry, Z. Pan
and J. Shi, Eds., SPIE 4758, 38–44 Hangzhou, China (2003).

40. M.-E. Bellemare, P. Haigron, A. Lucas, and J.-L. Coatrieux, “Depth
map based scene analysis for active navigation,” SPIE Conf. on Phys-
iology and Function from Multidimensioal images SPIE 3660, San
Diego, 202–213 (1999).

41. P. Pfaff, R. Kümmerle, D. Joho, C. Stachniss, R. Triebel, and W. Bur-
gard, “Navigation in combined outdoor and indoor environments using
multi-level surface maps,” in Proc. Workshop on Safe Navigation in
Open and Dynamic Environments at the IEEE Int. Conference on In-
telligent Robots and Systems (IROS), San Diego, CA (2007).

42. R. Hadsell, A. Erkan, P. Sermanet, J. Ben, K. Kavukcuoglu, U. Muller,
and Y. LeCun, “A multi-range vision strategy for autonomous offroad
navigation,” in Proc. IASTED Int. Conf. on Robotics and Applications,
International Association of science and Technology for Development,
Würzburg, Germany (2007).

43. N. Llopis and C. Nicholson, UnitTest + + , SourceForge http://
unittest-cpp.sourceforge.net/.

44. K. Beck, Test-Driven Development: By Example, Addison-Wesley,
Boston (2003).

Robert L. Nagel is currently an assistant
professor with the School of Engineering
at James Madison University. Dr. Nagel re-
ceived his PhD degree from Oregon State
University, his MS degree from the Univer-
sity of Missouri–Rolla (known now as Mis-
souri University of Science and Technology),
and his BS degree from Tri-State Univer-
sity (known now as Trine University). He has
been a member of the Design Engineering
Lab, a researcher at General Motors in the

Vehicle Development Research Lab, and has worked on contract
projects with both the United States Army and United States Air
Force. His research interests include understanding customer needs,
functional and process modeling, failure analysis, design for sustain-
ability, design of mechatronic systems, and systems integration.

Kenneth L. Perry is currently the lead devel-
oper for Interdisciplinary Design Collabora-
tive, LLC, in Rolla, Missouri. Perry is working
toward his MS degree in the area of soft-
ware compilers with the Computer Science
Department at the Missouri University of Sci-
ence and Technology, where he received his
BS degree. Perry has been an undergradu-
ate researcher with the Design Engineering
Lab and has worked on several software de-
velopment projects such as FunctionCAD (a

functional modeling design tool), and the Intelligent Ground Vehicle
Competition (IGVC) robot MAX.

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-12

http://dx.doi.org/10.1177/003754977101600104
http://dx.doi.org/10.1177/0278364902021010834
http://dx.doi.org/10.1002/rob.20147
http://dx.doi.org/10.1002/rob.20126
http://dx.doi.org/10.1002/rob.20136
http://dx.doi.org/10.1002/rob.20143
http://dx.doi.org/10.1016/S0142-694X(99)00003-4
http://dx.doi.org/10.1016/S0142-694X(99)00008-3

Nagel et al.: Function-based design process for an intelligent ground vehicle vision system

Robert B. Stone is a professor with the
School of Mechanical, Industrial and Man-
ufacturing Engineering at Oregon State Uni-
versity. Dr. Stone’s research interests include
design theories and methodologies, specif-
ically product architectures, functional rep-
resentations, automated conceptual design
techniques, and renewable energy systems
design. He leads the Design Engineering
Lab. He has authored chapters on product
architecture and reverse engineering tech-

niques in product design texts. He is a member of the ASME Design
Theory and Methodology Committee and a past chair of its signa-
ture international conference. Prior to initiating his graduate work, Dr.
Stone was a Space Shuttle flight controller for the Guidance, Navi-
gation and Control Section with the Missions Operation Directorate
of the National Aeronautics and Space Administration (NASA) John-
son Space Center. Stone received his PhD degree in mechanical
engineering from the University of Texas at Austin.

Daniel A. McAdams is currently an asso-
ciate professor of mechanical engineering
with Texas A&M University. Dr. McAdams re-
ceived his BS and PhD degrees from the
University of Texas at Austin and his MS de-
gree from the California Institute of Technol-
ogy. Dr. McAdams has been an associate
professor and the associate chair of gradu-
ate affairs for mechanical engineering at Mis-
souri University of Science and Technology.
His research interests are design theory and

methodology with specific focus on functional modeling, innovation in
concept synthesis, biomimetic design methods, model construction
and selection for design, and failure avoidance as applied to product
design.

Journal of Electronic Imaging Oct–Dec 2010/Vol. 19(4)043024-13

